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ABSTRACT

Cramblitt, Robert M. Ph.D., Purdue University, December, 1994. Techniques for Sub-
resolution Surface Characterization Using Coherent Diversity Measurements. Major
Professor: Dr. Mark R. Bell.

This dissertation examines the feasibility of obtaining small-scale surface infor-
mation from frequency-diverse measurements of surfaces that are stochastically de-
scribed by a regularity model. This parametric point-process model describes a one-
dimensional surface in terms of the mean and variance of the inter-scatterer distances,
and can represent scatterer distributions ranging from totally random to nearly peri-
odic. The problem of estimating model parameters from measured spectra is solved by
optimizing the total squared-error between closed-form approximations of the mean
power spectra of finite-length data intervals and the simple periodogram. The disser-
tation examines the general performance limitations of such a procedure, determining
how approximation error, signal-to-noise ratio and frequency-sampling rate affect the
feasibility and accuracy of parameter estimation. We find that parameter estima-
tion is feasible at frequency-sampling rates that are well below that suggested by the
PSD. This suggests that it is possible to obtain parameter estimates by comparing
sparse narrow-band frequency measurements to the PSD of the point-process, thereby
obtaining information about the surface on sub-resolution scales.

The dissertation extends the model to describe marked point processes. We dis-
cover that ignoring the marks can cause significant estimation error when estimating
the regularity model parameters in the presence of mark noise. Joint estimation of
the regularity and mark parameters is feasible only when the variance of the marks is
large with respect to their mean. Accounting for the marks can, however, allow the

regularity parameters to be accurately estimated in the presence of mark noise.




1. INTRODUCTION

Accurate classification and characterization of image regions is often an important
goal for the users of coherent imaging systems, such as synthetic aperture radar
(SAR) and B-scan ultrasound. Image classification can be thought of as an inverse
scattering problem, in which information about scattering surfaces must be inferred
from coherently detected images of the surface.. Some classes of surfaces may be
described by parametric stochastic models, in which case knowledge of the model
parameters, rather than of the scatterers themselves, is sufficient to describe the
surface. Surfaces in which elemental scatterers are arranged with some degree of
periodicity are one such class. The energy backscattered from coherently illuminating
these surfaces exhibits interference effects which can be exploited to obtain stochastic
descriptions of the surfaces and to extend the scale on which a system makes useful
measurements. We demonstrate this principle with an example which provides the
motivation to adopt a particular kind of point scatterer model. After describing the
model and reviewing its second order statistics, we develop an approximation for the
mean power spectrum of measured signals which is utilized in an optimized estimation
scheme to extract model parameters from frequency-diverse measurements.

To illustrate the effect that surface structure can have on a coherent system,
consider this simple case: a broadband pulse, p(t), is transmitted and scattered by a
very long, one-dimensional collection of equi-spaced, unit-reflectivity scatterers. The

received signal is 7(¢) = p(t) % s(t), where x denotes convolution and

s(t) =Y 6(t—1T) (1.1)
is called the scatterer function. The scatterer spacing, T, is expressed as a temporal

delay time (T' = 2d/v, where d is a spatial distance and v is the velocity of propagation

in the medium). p(t) may also represent a system impulse or point spread function,




so we will simply refer to it as the system response. The spectrum of the received
signal is

R() = LP(S(f) = LP(f)5 2 6(7 — ), (1.2

where P and S are the Fourier transforms of p and s, respectively, and L < 1 repre-
sents an effective loss parameter. It consists of impulses separated by the inverse of
the scatterer spacing, so the spectrum is highly structured. The case in which scatter-
ers are randomly spaced represents the opposite extreme. In this case, the scatterer
function for a finite interval of scatterers becomes a sum of unit-magnitude random-
phase phasors, and the power spectrum is a constant, independent of frequency, so
it exhibits no structure at all. Intermediate cases generate a power spectrum that
displays a combination of these behaviors.

Parametric regularity models have been pfoposed to describe the distribution of
scatterers in such a way that the parameters of the model will allow both regular and
random scatterer spacing, as well as the more interesting intermediate cases. The
model takes the form of a renewal point process, one which is very well described in
the literature. Regularity models arose out of applications of pulse frequency modu-
lation control methods to neural system modelling [1], and were applied to acoustic
scattering problems by Landini and Verrazzani [2]. They gave examples of biological
tissue structures exhibiting various degrees of regularity and demonstrated the feasi-
bility of using this feature to distinguish between classes of tissues using ultrasound
measurements. Their measurements were of tissues with periodic structures on scales
larger than the system resolution, so the bandwidth was wide enough to capture the
spectral peaks suggested by the regularity model. The simple Poisson point processes
that had been used to model acoustic scattering phenomena prior to Landini and
Verrazzani’s paper would correspond only to the case of completely random scat-
terer spacings. Wear, et al., applied autoregressive (AR) modelling techniques to the
problem of estimating the mean inter-scatterer spacing of regularly spaced scatterers
embedded in a volume of randomly spaced ones [3]. AR methods provide resolution

capabilities superior to non-parametric methods when lengths of the measurement




intervals are close to the mean scatterer spacing. Their methods do not incorporate
a parametric model which accounts for the stochastic nature of the inter-scatterer
spacings.

The ability to characterize a scattering surface by estimating model parameters
from frequency-diverse measurements depends on the frequency-measuring capabili-
ties of the system. For some systems, the spectral peaks may fall completely within
the system bandwidth, so that information on the scatterer spacing is incorporated
into the measured data. In other systems, the peaks may be farther apart than the
bandwidth, but may be detected by exploiting frequency-agile features of the system.
If the system has sufficient agility, its composite bandwidth may be wide enough to
-encompass the peaks. The possibility exists, however, that the frequency domain
structure can be discerned from only a few measurements at a sparse set of frequen-
cies. In this event, the information about scatterer spacing is measured even though
the scatterer spacing is smaller than the system resolution.

Neither regularity models nor point processes in general have been applied to radar
scatterer modelling. Many radar systems have been constructed with frequency-agile
abilities [4], and therefore have the potential to exploit the properties of the regularity
model to characterize sub-resolution structure. The model may not prove useful for
SAR image analysis problems because the system bandwidths are too narrow to
measure the spectral structure imparted by the regularity of surface scatterers [5].
The advent of multi-frequency SAR systems [6], however, suggests that the frequency-
sampling capabilities needed to exploit this structure may soon be at hand.

Applications of radar systems for remote measurement and characterization abound
in the fields of agriculture, oceanography and geophysics [7]. SAR imagery, for ex-
ample, has found an application in the problem of ground cover classification [8]. In
such an application, regularity models could potentially be used to distinguish pe-
riodic structures, such as crop rows, from random structures such as forest canopy
or meadows, in cases where the wavelengths were not short with respect to the row

separation. Some analyses have explicitly attempted to include effects caused by the




regular nature of crops. Ulaby et al., for example, developed a backscatter model
which characterizes the regular undulations of a bare tilled field with random pertur-
bations [9], but this is not a point process model. To the extent that forests could be
modelled as a collection of water-filled tree-trunks, regularity measurements could be
used to characterize the density of trees and the variance of their spacing, which may
conceivably be related to physical parameters such as the age and species of the trees.
Ocean wave measurements are a frequent application of both SAR and other radar
systems. Ocean waves would be expected to exhibit various degrees of regularity
depending on the local wind velocity and sea state, both of which are often measured
using wave data. The sensitivity of radars to small scale capillary and gravity waves
in the form of Bragg resonance is well known [10], so regularity models may prove
quite useful in characterizing ocean patches on small scales. Currie, et al., described
the measurement of snow fields by wideband radars, noting that the characteristic
scatterer spacing was well below the resolving capability of the measurement system
(0.5 m) , despite its wide bandwidth (640 MHz centered at 35 GHz) [4]. This may
be a case in which such small-scale information about the distribution of scattering
centers might be obtained from a sparse set of narrowband measurements taken over
a frequency range of many gigaHertz.

Regularity models can also be used to describe incoherently measured signals,
such as passive measurements of the sounds generated by knee joints. Zhang, et al.
[11], applied very similar models to describe these signals, although their assumption
of Gaussian interarrival statistics violates some basic assumptions of the derivation,
and they simulate ordinary, rather than stationary, renewal processes (this difference
is discussed in Chapter 2). Nonetheless, this application demonstrates that regularity
models can be used to characterize phenomenon which are more general than those
encountered in coherent measurement scenarios. In fact, they can be applied to any
signal which can be represented as the convolution of an impulse response with a

stationary point process.




Another passive measurement application is the analysis of electro-myography
(EMG) signals produced by measuring action potentials with electrodes in human
muscle. In certain cases, the regularity model parameters may provide a quantitative
means of describing this data. We are currently investigating this possibility.

In the next chapter, we examine the regularity model in detail and discuss its
power spectrum. The following chapter presents a developement of some closed-form
expressions that approximate the mean power spectra of finite-length measurements
of surfaces decribed by the model. We evaluate the accuracy of these expressions in
Chapter 4. Chapter 5 describes how these expressions can be used in an optimiza-
tion method to estimate the model parameters, and we assess the feasibility of this
approach. Finally, in Chapters 6 to 8 we extend these results to models that allow

the scatterers to have non-unit reflectivity.




2. SURFACE REGULARITY MODELS

The surface regularity model treats the scatterers as points of a renewal point
process in which the distances between points are gamma-distributed. This model is
described by only two parameters, but by varying them it can describe a great range
of scatterer spatial regularity behavior. Specifically, the model can produce cases in
which the scatterers are very regularly spaced (hence the name “surface regularity”)
as well as cases in which the spacing is entirely random.

We will assume that the surface illuminated and viewed by the coherent system is
a one-dimensional collection of uniformly reflective scatterers. The system transmits

a pulse, and the observed temporal response of the system to the surface is

r(t) = p(t) x s(t), (2.1)

where p(t) represents the impulse response of the entire system. We assume that p(t)
is known. Since it completely incorporates the effects of scatterers on the received

signal, we will call
s(t) = Y 8(t— o) (2.2

the scatterer function, in which the {7;} are an ordered sequence of scatterer locations
expressed as temporal delay times. s(¢) is the stochastic function whose attributes we
wish to determine. We will assume that the scatterers are the points of a stationary
renewal process (or infinite impulse process). The {T;}, defined so that T, < 0 < T3,
are then the recurrence times from the origin of the renewal process. We define
{ri =T; — Ti-1} to be the inter-arrival times of the process, which are to be distin-

guished from the inter-scatterer (or inter-event) times {z;}. The inter-arrival times




are differences between recurrence times which are measured with respect to an ar-
bitrary time origin, while the inter-scatter times are differences between event times
which are measured with respect to an arbitrary event [12].

In the regularity model, we assume that the inter-scatterer times {z;} are inde-
pendent, identically distributed (i.i.d.) random variables from a gamma(a,8) distri-
bution, whose density function is given by

xa—le—z/ﬁ
f(ZC) = W a,ﬂ,:c > 0, (23)

where I'(c) is the gamma function,
I'e) = /oo t* e tdt. (2.4)
0

The mean and variance of the inter-scatterer times are Z = a8 and 02 = af? = 72/,
respectively. Thus, for a given mean inter-scatterer spacing, Z, the variance of the
inter-scatterer times is controlled by varying the model order, a. If « is large, the
variance of the inter-scatterer times becomes small, and the scatterers become very
regularly spaced. In the limiting case, the scatterers have a periodic spacing. If
a = 1, the {z;} are exponentially distributed and the model reduces to a Poisson
point process (also called white Poisson noise). In this case, the scatterers appear to
have a random placement and the degree of regularity is considered small. Values of
o less than unity cause the scatterers to appear clustered.

For any stationary renewal process, the inter-arrival time about the origin must

have a density function given by
Tf(7
falr) = D (2.5)

and all other inter-arrival times must have the same density as the {z;}. When the
inter-scatterer times have a gamma(a, f) distribution, 7, will have a gamma(a+1, 3)
distribution. The first recurrence time, Ty must have the distribution

)= =2, (2:6)

where F(t) is the distribution function for the inter-scatterer times.



We now wish to determine the power spectrum of the measurements, r(¢), when
the scatterer spacings are described statistically by the regularity model. The power

spectral density (PSD) of the received signal is
0, (w) = |P(w)[*®s(w), (2.7)

where P(w) is the known frequency response of the system (the Fourier transform of
p(t)) and ®,(w) is the PSD of the random process s(¢). First, consider the stationary
renewal process, s(t). Both Cox and Lewis [12] and Leneman [13] derived general

expressions for the autocorrelation and PSD of such a process, with the former given

by

1 [o.0]
)= B [6(t) +;fn(t)] t>0 29
1—‘s(_t) t < 0

where f, is the density function of the sum of n independent inter-scatterer times,

f(t) *fn—l(t)a n>1
fa(t) = (2.9)
f(t) n=1.
The summation in (2.8) is called the renewal density.
The PSD is the Fourier transform of (2.8):
1 o0
0.(6) = o [14 32 (F) + Fw)|, (2.10)
n=1
where F(w) is the Fourier transform of f(t), which, for the gémma density, is
F(w) = /oo flz)e™™dz = (1 4+ yjwpB)™*. (2.11)
In this case, F' is the complex conjugate of the characteristic function of f.
Since
IF) =1 +w?8Y) <1, (2.12)

when w # 0 the geometric series in (2.10) may be evaluated and terms rearranged to

find that

0.0 =1 |2 . (213)




where Z = 1/F(w). Although straightforward in its derivation, this rather compact
form of the PSD has not appeared in the body of work dealing with regularity models.
It is valid for all valid values of «, unlike the forms presented by Sanderson [1] and
Gestri and Piram [14], which are only valid for integer values of &. These forms
do, however, explicitly show the presence of a delta function at the origin, which
is hidden in (2.13). Landini and Verrazzani used Sanderson’s PSD formula in their
acoustic scattering work.

Sanderson derived the autocorrelation of the scatterer function by expressing the

Laplace transform of the renewal density in terms of its poles, and inverting to get

(1 1 g (s
of 6(t) + of + @ Z e~ cos(wyt + ) aodd, t >0,
¢t)=q 1 [ 1 9 o2
— |6(t) + = (1 — e 2/P) + =N e cos(wyt + 0 aeven, t > 0,
aﬁ_() aﬂ( ) of 2 (wkt + 6x)
(2.14)
where
2r(k —1
o, = =1 (2.15)
1o
1
ap = —ﬁ—(l — cos b), (2.16)
wp = é—sin 0. (2.17)
The PSD of the process is given by
(1 [ 2 (at1)/2
aﬂ 14 —5(w Z Sk(w, wy) o odd
P, (w) =« - (2.18)
1 27 o/2
E 1+ ——ﬂ-é( w) — ﬂ8(0'+2)/2 (w) + Z Sk(w,wg)| « even
where
_oagpcosbp 4 (w—wp)sinf; o cos by — (w + wy) sin O
Sk(w’wk) - a]% + (w _ wk)2 + az n (w +w1¢)2 ? (2'19)
2/B
S(a+2)/2(w) = 2 [(2//3)/ +w2] (220)
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Note that Sanderson had an errant factor of two multiplying Siai2)/2 in (2.18).
Sanderson .points out that expressing the PSD in this fashion shows that it is the
sum of terms which have peaks at the frequencies {wy}, although it should be noted
that the maxima of the PSD do not occur at these locations. Sanderson’s formula also
allows us to evaluate the PSD at the origin, disregarding the delta function, which
we will do shortly.

Gestri and Piram [14] derived an alternate expression for the PSD, but did not

use Sanderson’s Laplace transform method, leading to an expression in complex form

given by
( -
1 27 2 & (e, — 1)
@ 1+@5(w)+ﬁsz p a>2
P, (w) =4 21w + (& — 1)2/B° [1 (€ — )
| s |
1 [ 27
\ &El-i_;,_@_&(w) O.’—l,
(2.21)
where
e = 0, (2.22)
& = e?mle, (2.23)

This formulation may appear simpler than Sanderson’s, but the actual implemen-
tation is computationally problematic because of the limitations imposed by most
software packages on the precision of complex number representations.

Figures 2.1 and 2.2 illustrates the spectral structure that develops as the model
order, a, increases from 10 to 100. In the Poisson process case, a = 1, the PSD is
equal to 1/Z everywhere except at the origin. In all of the figures presented in this
thesis, the average inter-scatterer spacing, Z, is set to unity, and the frequency axis
is in units of Hertz, so peaks in the spectrum occur near integer frequencies. The
spacing between peaks is controlled by Z, while the dominance and number of peaks

is determined by . As the maxima grow with increasing «, their locations approach
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Figure 2.2 PSD of the scatterer function for the regularity model with a very regular
scatterer distribution.
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multiples of ‘1 /% from the right, although their displacement from these frequencies
is always small. Estimates of Z derived solely from the locations of the maxima,
therefore, may be biased.

Examination of Sanderson’s formula shows that the PSD at the origin consists of
the sum of a constant and a delta function: 276(w)/z2? + 1/(az), a > 1. At high
frequencies, the variance of the inter-scatterer distances becomes large with respect
to a wavelength and the spectral structure disappears, with the PSD becoming a .
constant value of 1/Z. As o becomes larger, the spectral structure extends to higher
frequencies.

Real data are always truncated to finite-length sample intervals, either by some

form of range gating or by data editing. Truncation is equivalent to multiplication of

the received signal with a window function w(¢), which has support on an interval

of length 7"

wr(t) = rect(t/T) = (1) tle =T/, 1/2) (2.24)

The truncated signal can be written

rw(t) = wr(t — To)(p(t) * s(t)), (2.25)

where Ty is an offset representing the location of the sample interval. The mean power

spectrum of r,, is then

%E {|Ru(w)’} = (1P(@) @4 (w)) * %W%(w), (2.26)

where E denotes expectation and R, and Wr are the Fourier transforms of r,, and
wr, respectively. The mean spectrum (2.26) converges to the PSD (2.7) as T — oo.

Ultimately we will estimate the regularity model parameters by comparing mea-
sured spectra to theoretical expressions. Two approaches are possible: one can at-
tempt to accurately measure the PSD of the point process and compare this to (2.13),
or one can measure the mean power spectrum of finite data intervals and compare this
to (2.26). The former approach is more suitable when utilizing sparse, narrow-band

measurements. Since we assume that we are given finite data intervals to work with,
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we will explore the latter approach. In the next chapter, we will make some assump-
tions and develop an expression which approximates the mean power spectrum (2.26)
of an interval of the infinite impulse process. Since the window is incorporated into the
expression, use of the approximation eliminates the need to perform a convolution on
the PSD to compare it with measured power spectra, which can offer computational
advantages, especially when accuracy is desired. Although non-parametric spectral
estimates based on rectangular window functions have limitations [15], a closed-form
expression can be quite useful when it is the model parameters, rather than the PSD,
that are of interest. Like (2.13), our approximation will have the added benefit of

being free of the limitation that o must be an integer.
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3. POWER SPECTRUM APPROXIMATIONS

This section considers simplifications to the PSD expressions presented above. We
begin by noting that the system frequency response, P(w), is often fairly smooth over
its passband. It is also reasonable to expect to analyze data intervals that are longer
than the impulse response (or point spread function, for imaging systems) so that the
window function has a narrower bandwidth than the system. These assumptions are
true, for example, for the sample acoustic system analyzed by Landini and Verrazzani,
as well as the for the range response of the SEASAT SAR system described by Fitch
[5]. Munson’s analysis of SAR processing shows this to be a general property of
strip-mapping SAR systems [16]. Under these conditions, the system response can

be taken outside of the convolution in (2.26),
B{|Ru(w)*/T} » | P(w)(Wr(w)® x @,(w)/T), (31
which is the equivalent of moving the window function inside the convolution in (2.25):
rw(t) & Ty (t) = p(t) * wr(t — To)s(t). (3.2)

This approximation is equivalent to ignoring the fact that, given an interval of length
T, some signal in the interval is due to the convolution of p(¢) with points just outside
the interval, and that the convolution of points near the interior ends of the interval
with p(t) will give rise to a non-zero signal outside of the interval. We will assume that
the known P(w) has a conveniently wide bandwidth, and that we can compensate for
any significant in-band variations. We can then concentrate on the rightmost terms
in (3.2), and ignore the specific forms required for p(¢) when a particular system is
considered. If a system is specified, the appropriate power spectra may be weighted

accordingly.
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The rightmost terms in (3.2) represent the scatterer function truncated to a T-

length interval, and can be re-expressed as
s7(t) = wr(t — T/2)s( Z §(t — (3.3)

1=1
where N, is the counting process corresponding to the point process s(t), i.e., Ny is
the number of scatterers falling in the interval (0,], and, without loss of generality,
the origin is chosen so that the window is centered at T/2. We shall refer to (3.3)
as the truncated scatterer function (TSF). The TSF can also be expressed solely in
terms of the point process:
s(t) = Y 6(t — T) Lpmy(To) (3.4)
i=1

where 1[.](:c) is the indicator function. The Fourier transform of sz (%) is

Nrp
5= T, (3.5)
i=1

where the dependence on the model parameters is made explicit. The mean power

spectra of the response function (3.2) is
—E { |2 ()| } P)) 87 (w; o, 7), (3.6)
where ®% is the mean TSF power spectrum
7 (w; 0, ) = —E{[ST o,3)} = %@s(w)*W%(w). (3.7)

The convolutional form of (3.7) may be evaluated numerically. Theoretically, the
expectation integral may also be evaluated numerically, but in practice the compu-
tational burden and difficulty of choosing integration rules for high-order iterated
integrals make this option impractical. No exact closed-form expressions appear pos-
sible for either form. In order to produce an approximate closed-form expression, note
that the mean number of scatterers in the sample interval is Ny = T'/Z. In addition,
the asymptotic distribution of N7 is Gaussian with variance T'o2/z% = Tz/a? [17], so

the coefficient of variation of N7, ajsz /N_Tz, approaches zero for large T'. For 7 fixed,
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increasing a accelerates the convergence to the asymptotic distribution. This suggests
that, for large « or T', Nt can be approximated by its mean; consequently (3.3) can
be approximated by including in the summation only the contributions from the first
[T'/Z] points of the process, where [-| denotes rounding to the nearest integer. The

scatterer function for the first K process points is

sk (t) = wr (¢ — T /2)s(t) = > 6(t — Ty), (3.8)
i=1
and its mean power spectrum is given by
— W(Tm Th
% (w; 0,2, T) = E{|SK )P} = Tm_l,;E{e] ). (3.9)

We shall call (3.8) the approximate truncated scatterer function (ATSF).

The terms of (3.9) in the double sum can be grouped into sets for which m = n,
m > n and m < n. The terms for which m = n sum to K. For the other cases, note
that

Ty — Ty = (3.10)

Tm+Tm—1+"'+Tn+1 m>n7
_(Tn+Tn+1+"'+Tm+l) m<n.
This, plus the fact that the {r; : ¢ > 2} are i.i.d., means that the expectation can be

written in terms of the characteristic function of the {z;}, F*(w),

F*(w™™ m>n
W Tm=Tn) | _ ’
’ {CJ } ) { F*(—w)*™ m<n (3.11)‘

Since the {z;} have a gamma distribution, the characteristic function is given by

Frw)=E{e"}=(1—-jwB) =21, (3.12)

The expectation can now be expressed as

K
E{|Skw)} =K+ ( 3 P (—w) 4 2 F*(w)™ ) (3.13)

n=m-+1

and by using
K K K m-1

> > gln-m)=37 3 g(m—n) (3.14)

m=1 n=m+1 m=1 n=1
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it becomes
K m-1
E{ISk@)’} =K+ Y ¥ (F@)™™ + F*(-w)™™). (3.15)
m=1 n=1
By grouping terms for which m — n is constant, the double sum (3.14) can be further
simplified:
K m-1 K
Z Y. glm—n)=) ng(K —n), (3.16)
m=1 n=1 n=1
so the expectation becomes
E{|Sk(w)]*} = K + Z [F(@)$=" + F*(~w)%"]. (3.17)

These sums are variations of the finite sums of geometric progressions, and we can

use «
-1 ~(K-1
S g _ Z- KN4 (K-1)Z-K
n=1 (1 - Z)2
and the fact that F*(—w) = F(w), to finally write the mean power spectrum of the

ATSF as

= G(2). (3.18)

oK (w0, 5, T) = %[K +R{G(2))], (3.19)

where R{-} denotes the real part. This derivation is only valid, and only makes sense,
when K is an integer. We note, however, that (3.19) varies continuously with K, and
that the transition between integer cases is a smooth one, for [T/z| < K < [T/z]+1.
Allowing K to become real-valued therefore provides a means of interpolating between
integer cases. Furthermore, the non-integer cases are empirically in agreement with
numerical evaluations of (3.7). In a later chapter, we will use (3.19) in an error
minimization procedure in which it is preferable for the error to be a continuous
function of o, z and T, For these reasons, we define ®¥ to be a function of the
real-valued K = T'/z.

Asin (2.13), a is not limited to the integers. Since the finite length of the sample
interval was incorporated into the ATSF, the mean power spectrum of the ATSF also
includes finite sample length effects, and we have an approximate analytical expression
for the PSD of measured data which obviates the need to convolve a window function

with a theoretical PSD, as in (3.7).
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At w = 0, the mean ATSF power spectrum is K*/T = (T/z)*/T = —]\7;2/T.
The mean TSF spectrum is N2/T at the origin, and the difference between these
terms is equal to the variance of Nr. The relative difference between these terms is
(1 4+ To?/?), which approaches zero for large T or « or small Z. It is reasonably
small, for fixed z, unless T' and « are close to unity. At large frequencies, the variance
of the inter-scatterer distances becomes large with respect to the wavelength, and the
power spectrum becomes K/T = 1/z, as it is for the TSF spectrum and the PSD of
the infinite impulse process.

The windowed version of the zero-mean point process (the zero-mean truncated

scatterer function (ZTSF)),
8r(t) = wr(t — T/2)(s(t) - 1/3), (3.20)
can be approximated by
k(1) = wri (t = Tie/2)(s() — 1/2), (3.21)

which we call the approximate zero-mean truncated scatterer function (AZTSF). Uti-

lizing the fact that the characteristic function of 7} is
E{e®h} = (1 -z, (3.22)
the mean power spectrum of the AZTSF is found to be

oK (w;0,7,T) = —E{|SK )12} = oK (w)+

rliir @) ol - e {2 o

where 3{-} denotes the imaginary part. The value of the mean AZTSF power spec-

trum at the origin is

i_|_ (a+1)(a+2)
aT 32T

which is proportional to the mean squared difference between 7' and Tx. Since

K (0) = ®5(0) + O(1/T), where O(z), the Bachman-Landau notation, represents

®K(0) = E{T Tx) }____ (3.24)

a term proportional to z, the AZTSF converges to the PSD at the origin, as does the
TSF spectrum.
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4. APPROXIMATION ACCURACY

Since closed-form expressions for (3.7) do not exist, none exist for the error be-
tween (3.7) and its approximations, which limits the mathematical rigor of an error
analysis. The accuracy of the ATSF and AZTSF mean power spectrum formulas may
be examined by comparing them to numerical evaluations of the convolution in (3.7)
for various values of a and T'/z. The integrated squared-error (ISE) and the square
root of the total squared relative error (in percent), also called the root mean square

(RMS) relative error, may be used to quantify the error of the approximations, where

1 rtwmax 2
ISE = 10log; | — o7 (w) — oK (w dw) 4.1
e (50 [ [o7(0) - 05 ) 41)
and 2
_ 1 temax [67(w) — ®X(w)]? -
RMS = 100 (—7r /_ o [ T dw| . (4.2)

Table 4.1 presents the ISE and RMS relative error for a variety of cases. The ATSF
and AZTSF spectra are equal to 1/Z at non-zero frequencies when 7'/ = 1, because
only one scatterer contributes to the approximation sum. The approximation error
is quite large in this case, but will decline as the number of scatterers included in the
summation increases.

Insight into the nature of the approximation error may be obtained by considering
the « = 1, T = 100 case. Because « is unity, the PSD of the random process s is
flat except for the delta function at the origin, which represents the DC power of
the process. The TSF spectrum is therefore flat except for a replication of W2(w)
at the origin, which has a sinc?(w) shape. The ZTSF spectrum obviously lacks this
feature. The approximation error of the mean ATSF power spectrum for the o = 1,
T =100 case is shown in Fig. 4.1. The ATSF spectrum does not match the sidelobes

of the W2 function in amplitude, so the error appears as a decreasing oscillatory bias.
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Table 4.1 Absolute (ISE) and relative (RMS) error of the mean ATSF and AZTSF

power spectra.

ATSF AZTSF

« T |ISE(dB) RMS (%) |ISE (dB) RMS (%)
10 1 -12.7 24.9 -8.1 87.3
10 10 -24.9 17.8 -27.0 14.3
10 100 -31.1 13.5 -47.0 1.6
10 1000 -36.4 7.5 -67.0 0.2
100 1 -18.2 12.4 -9.3 186.1
100 10 -24.2 8.5 -19.5 62.4
100 100 -41.4 17.1 -38.6 12.6
100 1000 -51.3 14.1 -58.6 1.4
500 1 3.5 76.0 2.9 298.6
500 10 0.8 31.5 0.7 91.7
500 100 -35.8 2.7 -31.7 43.7
500 1000 -54.7 17.8 -51.5 6.7
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Figure 4.1 Difference between the mean TSF and ATSF power spectra. Error in
tracking W2(w) near the origin is dominant for low values if a.
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Although the maximum error remains constant as T increases, the ISE and RMS
relative error both decline.

The absolute and relative approximation error of the mean ATSF spectrum for
the @ = 100, T = 100 case is plotted in Figures 4.2 and 4.3. The error curves
demonstrate that there are two types of error: error in approximating the replication
of W7 at the origin and error in approximating the higher-frequency harmonic peaks
of the TSF spectrum. When « is small relative to T'/Z, the approximation error about
the harmonic peaks will be biphasic and inversely proportional to T. As « increases,
the width of the first harmonic peak of the PSD narrows, becoming equal to the
width of W2 when o & 7T/, so the first peak of the TSF spectrum will take on the
character of W#, which the approximation cannot reproduce exactly. The error about
the first harmonic peak will therefore increase as o becomes larger than some value,
which we take to be approximately a > 3.57/z. The inability of the approximation
to reproduce W2 also causes the relative error to be large near the origin, although
the absolute error is small there. This error declines slower than 1/T" as T increases.

The absolute and relative approximation error curves for the zero-mean case are
presented in Figures 4.4 and 4.5. The comments made concerning approximating
the harmonic peaks for the nonzero-mean case also apply here. For the zero-mean
approximation, however, the entire error curve appears to diminish as 1/7". The low-
frequency error of this approximation appears primarily as a slowly decreasing bias,
rather than the damped oscillatory bias of the nonzero-mean case.

In summary, the quality of the approximation at high frequencies is good unless
T/z is either very small (T'/Z < 10), or small with respect to o, (T/Z < a/3.5).
The bias of the approximations at low frequencies, however, causes the RMS relative
error to be large even when the higher frequencies are well approximated. In many
applications, it is the higher frequency spectral structure that is important, so a bias
near the origin would be tolerable. Furthermore, since the absolute error is small at
the low frequencies, the performance of algorithms utilizing the ISE as a metric will be

insensitive to errors there. The choice between the ATSF and AZTSF approximations
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Figure 4.2 Approximation error of the ATSF power spectrum. As « increases, error

in reproducing the harmonic peaks dominates the error on an absolute scale.
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should be influenced by the preferred nature of the low frequency error, and the added
cost of estimating and removing the mean for the zero-mean case.

We now have expressions that approximate, in closed-form, the mean TSF power
spectrum for which the sample mean power spectrum, or periodogram, is an unbiased
and consistent estimator [18]. The periodogram may be simulated by generating
sample points from the stationary renewal process (SRP) and using those falling in the
i-th sample interval to compute the sample TSF power spectrum, |S%(w; a, :E)|2 /T.

The results for N trials are then averaged to compute the periodogram,

N
N (w;a,z,T) = NIT— ; 'Sfip(w; oz,:fc)l2 : (4.3)
In most cases, the sample TSF spectra are exponentially distributed at all frequen-
cies (as a consequence of the central limit theorem), and the signal-to-noise power
ratio (SNPR) of the periodogram is equal to N, where the SNPR is the ratio of the
squared-mean to the variance. If there are relatively few scatterers in the interval
(T'/z < 10) and the inter-scatterer variance is small (« is large), then the sample
spectra will become significantly non-exponential in small intervals about the largest
harmonic peaks of the TSF power spectrum, and the SNPR will actually be larger
there. The periodogram SNPR must be very large in order for the higher-frequency
approximation error to dominate the periodogram noise, a property which extends
the useful range of the approximations. For example, a typical ISE for the SNPR =
30dB, o = 100, T' = 100 periodogram is -23dB, whereas the ISE of the ATSF above
0.82 Hz is -46.6 dB. The resolution of the periodogram is approximately 1/T (Hz),
so the periodogram cannot resolve the peaks of the TSF spectrum if T'/z is close to
unity. |
We conclude this chapter by briefly examining the effect of choosing to simulate
an ordinary renewal process (ORP) instead of a stationary one. Since we assume
that our measurements are truncations of stationary processes, the SRP model is a
natural one to use. The distribution of the first arrival time (2.6) must be different
from that of the inter-arrival times in a SRP, but, in an ORP model, they are the

same. The effect of differing first arrival time distributions on the TSF spectrum




25

will be negligible when the number of scatterers in the interval is large. Also, when
o =1 the two processes are equivalent, so there will be no difference between the TSF
spectra. As the average number of scatterers in the interval becomes small, however,
the differences become significant. Figure 4.6 compares a simulated periodogram for
an ORP (with approximately ten scatterers falling in the sample interval), and the
ATSF spectrum for the SRP. The ORP spectrum is biased downward with respect
to the SRP spectrum. The bias is explained by noting that the first arrival time
of the ORP has a larger mean than that of the SRP, so fewer scatterers fall in the
sample interval, on average. When T'/Z becomes unity and « becomes large, the first
scatterer of the ORP model will fall near the end of the sample interval, falling inside
about half the time, in which case the high-frequency limiting value of the spectrum is
one-half that of the SRP. Some analyses have used ORP simulations where SRP ones

should have been used [11], and in others the type of simulation used is ambiguous

[2].
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Figure 4.6 Simulated ORP-TSF and ATSF power spectra for a moderately regular
surface and a moderately short sample interval.
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5. MODEL PARAMETER ESTIMATION

This chapter discusses the problem of finding estimators for the parameters (o, 3),
or, equivalently, (o, Z), of the regularity model. The sample interval is usually known.
Landini and Verrazzani [2] developed one method for extracting the parameters from
data measurements. After estimating ®; with the periodogram, they estimated z
by measuring the spacing bétween peaks in the autocorrelation of the cepstrum. o
was estimated by measuring the damping of the autocorrelation. They were able to
verify that the parameter estimates agreed, in a gross sense, with the histological
characterization of the measured tissues. Despite this agreement, their estimation
procedure lacks any form of optimization, so the estimates cannot be described as
optimal in any sense. It would be preferable to develop estimators which are either
optimal or at least contain an optimization step which can be used to assess the
performance of the algorithm.

If the system resolution is fine enough to allow the resolution of the locations
of individual scatterers, the maximum-likelihood (ML) solution can be used to es-
timate the model parameters from the observed inter-arrival times [12]. A suffi-
cient statistic for the unknown parameters, § = [e, Z], of the regularity model is
f(:i') =2V a, YN In z;], assuming N samples of the inter-arrival times are avaﬂable.
The ML estimate of Z is simply the sample mean 2 = YV z;/N. The ML estimate of

« is the solution of

N
log& — (&) =logz — Y log(z;)/N, (5.1)

=1
where t(a) is the digamma function, ¢(z) = dlog I'(z)/dz.
If the scatterers can not be resolved, however, the inter-arrival times cannot be
observed. Since the measurements are a somewhat complicated function of the {7;},

neither the sufficient statistic nor its conditional expected value can be computed,
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so neither ML estimation nor expectation-maximization algorithms [19, 20, 21] are
feasible.

The problem of estimating («, z) from diverse Wideband‘frequency measurements
can be formulated as an optimization problem in which we seek to minimize an error
metric subject to the constraints that & > 0 and z > 0. Using a squared-error
criterion, we may define the total squared error (TSE) to be a function of the true

parameters, (e, Z), and the estimated parameters, (&, z):
(e, Z,4,2;T) = / (fbsT(w; a,I) — @T(w;&,i))z dw. (5.2)
The total residual error (TRE),

{555 () 2

measures the combined error of the parameter estimates. The TSE is a non-negative

function with at least one minimum of zero when (&,z) = (o, z). The complexity of
®T makes it difficult to prove that (5.2) has a uniqﬁe global minimum, although in
practice we have found this to be the case whenever (5.2) is approximated as a sum
over a sufficiently dense set of frequencies.

The mean TSF spectrum for the parameter estimates, ®%(w; &, z), may be eval-
uated using the convolution (3.7), or approximated by ®X(w;é&,z,T). The actual
TSF power spectrum, @f(cq; a,Z), is estimated from data measurements using the
periodogram. When using the ATSF spectrum and the periodogram, we denote the
approximate TSE (ATSE) as
T,N) =30 (0 (w5002, T) — 0K (w5 8,5,T))" . (54)

wi

81>

ep(a,:i,&,

The parameter estimate minimizing (5.4) is denoted (&*,z"). Since ® is an un-
biased and consistent estimator of ®7, the mean of the ATSE will converge to the
total squared error between @7 (w; «, ,T) and ®X(w; &, 2, T'), which will be close to €
whenever the latter is a good approximation of the former. In this case, the optimiza-

tion procedure compares the observed sample mean TSF power spectrum with the
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ATSF power spectrum, and seeks parameter values that minimize the total squared
error between the two. The minimization is over all valid values of the parameters,
and therefore requires a search to find the optimal values. Since the optimization
matches a sample mean spectrum to its (approximate) ensemble-averaged value, this
is a moment-matching algorithm [22], and we refer to this estimation scheme as the
moment-matching method. The algorithm can potentially estimate the model pa-
rameters using only a sparse set of frequency measurements, which can reduce the
computational requirements and provide insight into the use of sparse narrow-band
measurements.

Parameter estimation using this approach will be feasible only if the coordinates
of the global minimum of the ATSE surface are close to the true parameters and if
the global minimum can be easily located. Plots of (5.4) indicate that the ATSE
will have a unique global minimum if the SNPR is large and the frequency samples
{w;} are sufficiently dense, but we have not proven this. In general, for an arbitrary
choice of {w;}, (5.4) will not have a unique global minimum. In order to explore
the topic further, we will assume that the {w;} will be a set of uniformly spaced
frequencies within the interval (0, 27 fmax), where fmax is chosen to be large enough
to include essentially all of the spectral structure of ®7. From an empirical analysis,
fmax = max(0.56a°°/%,2.4/z) (Hz) corresponds to a frequency bandwidth allowing
®, to settle to within 1% of its final value of 1/Z. The performance of a particular
optimization algorithm can then be measured by averaging the TRE of its parameter
estimates over many trials (realizations of the point process), and the dependence on
the phase of the samples can be suppressed by randomizing the sampling phase over
one frequency step for each trial. Since we do not wish to analyze a particular algo-
rithm, we will discuss the structure of the ATSE surfaces and suggest an optimization
strategy, but we will then focus on the accuracy and accessibility of the minimum of
the ATSE surface.

Fig. 5.1 presents a sample ATSE surface. Several slices of this surface parallel

to the z axis are shown in Fig. 5.2. ATSE surfaces for other values of o and T/z



Figure 5.1 Typical variation of the total squared error between the ATSF and sample

X N
(=3 =1

(Y
=]

TSIAL SQALARED TRROR (A

mean TSF power spectra when (o, Z) = (100,1), T = 100 and N = 1000.

40

TOTAL SQUARED ERROR (dB)
)
(=]

2 3
ESTIMATED x

Figure 5.2 Representative slices through the surface of Fig. 5.1.

29




30

45

r \\\\\‘\\\\\\

_ ‘\\\\\\\\\\\\\@@y\}}}}}}}g}}@\‘
un \ ‘! M

“‘ \\\\\\\ T

TOTAL SQALARED TRROR (A=)
5 Ao
o

Figure 5.3 Typical variation of the total squared error between the ATSF and sample
mean TSF power spectra when (e, ) = (1000,1), 7' = 100 and N = 1000.

are similar in appearance, as Figs. 5.3 to 5.5 illustrate. = The common features
of these surfaces are worth noting. Since the ATSF spectrum is a function of wi,
changing Z stretches or compresses the ATSF spectrum with respect to the frequency
axis. As I grows large, the ATSF spectrum compresses towards the origin and its
high frequency limiting value of 1/% approaches zero, so the ATSE becomes the total
power of ®(w). As  becomes less than Z, the ATSE rises sharply, but then declines
when the maximum of ®X at f = 1/Z moves outside of the frequency range of interest.
Although it is not shown in the ATSE figures, as # becomes even smaller, the error
will rise again because the lobe of ®X centered at the origin will increase in magnitude
until it overlaps with the maxima of ®1.

If z is varied when & is large, the many extrema of the ATSF spectrum interact
with those of ®Y to create multiple extrema in the ATSE, which are apparent in Fig.
5.2. If & is chosen so that only the maximum of ®X at f = 1/ is developed, this
behavior will be suppressed, and the ATSE will vary smoothly with Z, except at very
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Figure 5.5 Typical variation of the total squared error between the ATSF and sample
mean TSF power spectra when (a,Z) = (1,1), T = 100 and N = 1000.

small values. If & = 1, ®¥ is a constant equal to 1/%, and so the ATSE grows as 1 |z
as # decreases. The ATSE varies smoothly with 4.

We have exploited the behavior of the ATSE function for this hypothetical scenario
to demonstrate that it is possible to design a parameter search algorithm for the
moment-matching method that is relatively immune to the problem of becoming
trapped at local minima. We initially optimize with respect to z with & = 10,
because the ATSE behaves relatively well when only the f =1 /% maximum of &K
is developed. Given this optimal Z, an optimization with respect to & will produce a
set of parameter estimates in the neighborhood of the global minimum, because the
ATSE varies smoothly with &. A search scheme such as gradient descent can then be
used to accurately locate the global minimum; we successfully used the IMSL routine
DBCONTF [23]. The default stopping parameters were used, with the exception of the
gradient tolerance, which was chosen to be 0.001. We found that adequate results
could also be obtained using a simple univariate search, which alternates between

searching for o and Z by using a simple bisection algorithm [24] which halves the
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. Table 5.1 Average TRE (%) of (6*,%”) for the ATSE function with SNPR = oo,
averaged over 100 trials with random sample phases. Each box is of the form: sample
mean/standard deviation.

a=1 2 5 10 20 50 100 200 500
T=2 | 97.5/3.8 | 76.9/2.4 | 9.2/1.1 | 11.8/0.4 | 10.4/0.01 | 3.0/0.02 1.6/0.002 | 1.3/0.0004 0.8/0.07
5 29.6/1.6 | 19.0/3.1 | 1.9/0.4 | 2.6/0.06 2.2/0.2 1.3/0.002 0.8/0.06 0.3/0.0002 | 0.2/0.0001
11 16.4/0.7 | 11.3/0.8 | 2.0/0.1 | 0.7/0.3 0.6/.04 0.7/0.1 0.6/0.04 0.2/0.04 0.03/0.0004
20 6.0/0.9 2.6/2.1 | 1.6/0.6 | 0.9/0.1 0.3/0.01 0.2/0.03 0.6/0.01 0.2/0.05 0.02/0.0004
51 3.3/0.3 1.8/1.1 | 0.3/0.1 | 0.4/0.2 0.6/0.1 0.1/0.02 0.2/0.008 0.3/0.1 0.08/0.03
111 0.6/0.5 1.3/0.6 | 1.1/0.2 | 0.6/0.2 0.9/0.2 0.2/0.1 0.02/0.003 0.1/0.04 0.1/0.07
200 0.3/0.1 1.2/0.6 | 1.0/0.2 | 0.5/0.2 0.7/0.2 0.2/0.1 0.1/0.01 - -

search interval containing the minimum until the slope of the ATSE curve is suitably
small (0.001, as before). It is not our intention, however, to analyze the performance
of a particular optimization algorithm, but rather to explore the general performance
limitations of all such algorithms.

Typically, the coordinates of the minimum of the ATSE surface differ from the
true parameter coordinates because the sample mean TSF spectrum is random and

‘ the ATSF spectrum is only an approximation to the TSF spectrum. Effects due
to the former cause can be eliminated by letting N — oo (SNPR = oo), which is
equivalent to using a numerical evaluation of the convolution (3.7). For this case, the
average TRE due to the approximation is tabulated in Table 5.1. The convolution
was calculated by multiplying the discrete Fourier transforms (DFT’s) of samples of
the functions to be convolved and inverting. In order to be numerically accurate,
the sequence lengths may need to be quite long, in which case the computation time
becomes significantly longer than that of the ATSF spectrum.

In Chapter 4, we showed that the ATSF spectrum approximation error increased
for @ > 3.5T/z because of error in approximating the harmonic peaks of the TSF
spectfum. The performance data of Table 5.1 suggest that this type of approximation
error does not have a significant effect on the parameter estimation scheme over the
parameter ranges examined. The ATSF approximation error is also large when T'/z

is small, corresponding to the case where few scatterers fall in the sample interval,
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Figure 5.6 Variation of total residual error with periodogram SNPR.

on average. Table 5.1 indicates that this error will adversely effect the parameter
estimation error, so the ATSF spectrum should be replaced by the numerical compu-
tation of the mean TSF spectrum in certain cases, for example: T/Z < 20 — a. This
is convenient, since it is not cumbersome to accurately calculate the convolution in
these cases.

The effect of the introduction of periodogram noise on the TRE is demonstrated
in Fig. 5.6, for which finite-SNPR periodograms (4.3) are used to estimate the TSF
spectrum. The TRE appears to be inversely proportional to the square root of the
SNPR, with the constant of proportionality depending on both « and T'/z. This
type of behavior indicates that the performance degradation of a search algorithm as
SNPR decreases will be gradual. For a given «, the TRE will be smaller for a larger
value of T'/z. It is also of interest to notice that the TRE is not dramatically affected
as long as NT is held constant.

Since the moment-matching algorithm uses samples of frequency-domain func-

tions, it is necessary to determine how algorithm performance depends upon the
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frequency-sampling rate. All of the prior TRE’s were calculated using a very dense
set of frequencies, which suppressed sampling rate effects. The first peak in the
scatterer function PSD (2.13) is the narrowest and corresponds to a single term of

Sanderson’s expansion (2.18). Various measures of the temporal bandwidth of this

term can be defined. The RMS bandwidth, given by
Jo? t2em 222t cos?(wyt)dt
Io° e~22t cos?(wat)dt ’

where @, and w; are defined in (2.16) and (2.17), is approximately 0.05aZ (sec).

Brms = (55)

Another measure is the time at which the term of the autocorrelation function cor-
responding to the aforementioned term in Sanderson’s expansion is reduced by 50%,
which is given by Byo; = 0.035aZ (sec). Another measure is the inverse of the 3-dB
width of the first peak of the PSD, which is given by Bgyg = 7Z/ay = 0.16a3.
One might expect that the Nyquist frequency-sampling rate required for adequate
representation of ®; should be approximately twice whichever of these bandwidth
measures is appropriate. Note that all of these measures vary linearly with c.

Since the TSF spectrum is a filtered version of the PSD, its Nyquist frequency-
sampling rate should be no greater than that of the PSD. But, since successive peaks
have progressively smaller temporal bandwidths, and several peaks are included in
the measurement scenario we have assumed, it is not obvious how the TRE is re-
lated to the frequency sampling rate. In addition, knowledge of the approximate
parametric form, ®X of &7 represents additional information which may reduce the
Nyquist sampling requirement. The reduction of the bandwidth of successive peaks
as frequency increases suggests that the frequency-sampling rate could be varied, or
“chirped”, with frequency to improve the sampling efficiency.

As o increases, each peak in the PSD narrows as its amplitude increases. The
first peak will therefore become undersampled as « increases, which should cause an
increase in TRE. The emergence of higher-order peaks, which have smaller band-
widths, should exert an opposite influence on TRE, so it is difficult to predict how
the combination of these two influences should affect TRE.

Figures 5.7 and 5.8 show how the TRE varies with frequency sampling rate,
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Figure 5.9 Variation of total residual error with the frequency sampling rate for
various « values with SNPR = 10.

ps, for various values of SNPR and a. The ratio of the SNPR = 10 and SNPR =
100 curves at larger sampling densities becomes close to the /10 factor observed
in Fig. 5.6. Extrapolating from the TRE values at the largest sampling density
(9.93 samples/Hertz), the SNPR that would produce a TRE equal to that of the
SNPR=o00 case would be 1651. This suggests that the TRE would not be improved by
increasing the SNPR beyond this approximate value. It also implies that periodogram
noise dorﬁinates approximation error as a source of TRE unless the SNPR is very
large, as we speculated at the end of Chapter 4. Both finite-SNPR curves flatten at
approximately 6 (samples/Hz), suggesting an approximate limit beyond which the
TRE will not be improved in this case.

Figure 5.8 shows that the TRE for the SNPR=co case is large when the sampling
density is pathologically small, but it is generally below 1% at other sampling densities
for all a. This implies that the coordinates of the global minimum of the ATSE surface
are usually very close to the true parameter values when there is no periodogram

noise. Figure 5.9 shows the TRE for various « at an SNPR of 10. There is a slight
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separation of the curves at this SNPR, with the lowest value of a having the largest
TRE. This suggests that, with a finite SNPR, parameter estimation can potentially
be more accurate with as « increases, because the coordinates of the global minimum
of the ATSE surface are getting closer to the true parameter values.

While TRE measures the error of the coordinates of the global minimum of the
ATSE surface, it does not indicate how difficult that minimum may be to locate.
We assess this by estimating P. = ||.S;||/||S]|, where S is a finite convex subset of the
(&, z) parameter space and S, is the subset of S in which a gradient descent algorithm
will converge to the global minimum. This ratio represents the a priori probability
of convergence if the gradient descent algorithm is started at a random location in
S and the sampling phase and point process are generated randomly. In the plots
of P, that follow, S is approximated by a grid with logarithmically-spaced points
at a density of 20 per decade. Figures 5.10 and 5.11 show how P, varies with the
frequency sampling rate for various values of SNPR and . Fig. 5.10 shows that P,
is not strongly affected by the SNPR, which implies that the ability to find the global
minimum of the ATSE surface is not critically dependent on SNPR. The P, curves do
shift significantly to the right as « increases, however. This indicates that it becomeé
more difficult to locate the global minimum of the ATSE surface as « increases. This
might be expected, since we expect more local minima to develop in the ATSE surface
as « increases. The P, curves tend to reach a maximum of about 80%. Fitting curves
to the P, data for each a and using them to predict where P, = 0.8, then fitting
these points as a function of a yields p5°% = 0.0194a + 4.03 (r = -.987), where r
is the correlation coefficient of the linear-least squares fit; values of r close to unity
indicate a better fit. This is a rather crude estimate of the frequency sampling rate
required to maintain P, at a reasonably large value. The linear dependence on « is
similar to that of the temporal bandwidth measures observed earlier; the smallest
of the Nyquist rates suggested by these measures is 0.08c. This sampling rate is

comparable to pff’% for small «, but becomes larger as « increases. This implies
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. that the frequency sampling rate required for feasible parameter estimation can be
significantly less than the Nyquist rate suggested by the spectral structure.
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6. MARKED POINT PROCESS MODELS

The regularity model, until this point, has only allowed scatterers with unit re-
flectivity. In this chapter, this restriction is lifted and the more realistic assumption
of random reflectivity is applied. The stationary renewal process with non-unit-
magnitude points is called a marked point process, where the reflectivity of the point
is the mark associated with that point. We assume that the marks form a stationary
random process that is iﬁdependent from the stationary renewal process, and charac-
terize the mark process with its second-order statistics. Two scenarios are possible:
the marks may be sequentially correlated or temporally correlated. The autocorrela-
tion of temporally correlated marks is a function of the time separation between the
marks, while that of sequentially correlated marks is a function of the difference of

the sequentially numbered indices of the marks.

6.1 Temporally Correlated Marked Point Processes

The temporally correlated case can be modelled as the product of the original

scatterer function and the mark process, m(t):
Sme(t) = m(t)s(2). (6.1)

and the power spectrum of the marked process is the convolution of those of the mark

process and the scatterer function:

Domi(w) = Bp(w)* B, (w).
= Omx®, + M0, (6.2)

where @ is the PSD of the zero-mean mark process. The latter form shows that the

PSD is the summation of the original PSD (weighted by the square of the mean of
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the marks) with a filtered version of itself (which will be proportional to the variance
of the marks). '

We once again assume that the system impulse response varies smoothly with
respect to ®,n¢(w) and is broadband with respect to W?(w), and that we may com-
pensate for its effects. The marked temporally-correlated truncated scatterer function

(MTTSF) power spectrum is then
87 (w) = By(w) * B (w) * W7(w)/T, (6.3)

so the mark process acts in the same capacity as a window function. Although (6.2)
and (6.3) provide intuitive insight into the effect of the marks, they have no closed-
form equivalents. .

If the power spectrum of the mark process is narrowband with respect to the
window spectrum W2, the marks will not affect the TSF spectrum substantially. This
would be the case when the correlation length of the marks is longer than the window
length T'. The marks would be expected to exert a more substantial effect on the
TSF spectrum as their correlation length becomes shorter than the data window. In
the limit, if the marks are completely uncorrelated, ®,,(w) becomes flat and obscures
all the spectral structure in ®,(w).

We can define the autocorrelation of the mark process to be
¢mt(t) = Ufnpmt(t) + m—2’ . (64)

where p,,:(t) is the normalized autocovariance function, and 7 and o2 are the mean
and variance, respectively, of the mark process.

If we assume that the form of the autocovariance is
pme(t) = e~ [t/ Tme cos(Wmet), (6.5)

a closed-form expression may be derived for the mean ATSF spectrum. Examples of
signals that can be modelled with this autocovariance include the output of single

degree-of-freedom systems, such as a simple damped spring-mass, with white noise
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input [25], or the output of a narrow-band bandpass filter with wideband noise input
[26]. This autocorrelation, with w,, = 0, also describes binary signals with switching
times generated by a Poisson process [26], and the output of a first-order low pass (R-
C) filter. The Ornstein-Uhlenbeck solution of Langevin’s equation, which describes
the velocity of motion of a particle undergoing free Brownian motion with white
Gaussian input noiée, also has an autocorrelation of this form [27].

The independence of m(t) and s(t) allows us to write

K 1 & & | (Trn=Tn)
q)smt(w) - f Z_l Zl E {¢mt(Tm - Tn)ejw mean } (66)

Proceeding as in the case of the ATSF derivation, the sum is split into the cases of

m =n, m > n and m < n, and we use the identities (3.14), (3.16), and (3.18) to

write
X (w) = mOK (w) + i_,;”l (K +%{G(Zn) + G(Z2)}), (6.7)

where
Zin = (14 B/Tmt + 38(w + wme))%, (6.8)
Zio = (14 B/Tms + 2B(w — wme))". (6.9)

This function is the sum of the unmarked ATSF spectrum, weighted by the square of
the mean of the marks, and a new expression that is weighted by the variance of the

marks. We will refer to (6.7) as the mean MTATSF spectrum, where “MT” denotes

the marked temporally-correlated case.

6.2 Sequentially Correlated Marked Point Processes
The sequentially correlated marked process may be written as
Sms(t) = Z mué(t —T,). (6.10)

In this case, there is no equivalent to the intuitively-pleasing open form of (6.2), but
a closed-form expression for the PSD can be derived for specific mark autocorrelation

functions.
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The general form of the PSD was derived by Leneman [13] and is given by:

Pl 25 P+ F ). (6

Qsms (U) )
Again assuming an exponentially damped form for the autocovariance,

pms(n) = e~/ me cos(w,,,n), (6.12)

the geometric series can be evaluated to produce

IZ31|2 -1 IZs2|2 -1

B s (w) = M2D, —m , 1

(9)) (w )+ Z =17 T 2 =1 (6.13)

where ;
Zy = ZellTmegmaome (6.14)
Zyy = Zet™msglems, (6.15)

As in the temporal case, the PSD is the weighted sum of the unmarked PSD and a
modified expression.
Given the same assumptions about the system response as in the temporally

correlated case, the truncated scatterer function power spectrum can be written as
Bons (W) = omo(w) * Wi(w)/T. (6.16)

A closed-form expression may be derived for the mean ATSF spectrum. Proceed-

ing as in the temporally-marked case, the independence of m(n) and s(¢) allows us

to write
1 K K
sms Z Z ¢ms(m - ’I’L E {eJW(Tm—Tn)} . (617)
m 1n=1
Using (3.14), (3.16) and (3.18), this becomes
OF () = M0 () + 22 7 (K+§R{G( Zs)+ G(Z2)}). (6.18)

We will refer to (6.18) as the mean MSATSF spectrum, where “MS” denotes the

marked sequentially-correlated case.
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6.3 General Observations

All of the PSD or ATSF expressions show the marked spectra to be the sum of
the unmarked spectra, weighted by the square of the mean of the marks, and a new
expression that is weighted by the variance of the marks. If the signal-to-mark-noise
power ratio (SMNPR), m?/02 , is large, the marks will not alter the PSD or ATSF
expressions significantly, and so the marks can be ignored.

Assuming that w,, = 0, the temporal and sequential cases should be equivalent

when the number of temporally-correlated scatterers falling within one correlation

length, N,

mt)

is equal to the number of sequentially-correlated scatterers, 7,,,. This
will be the case when the variance of N, is relatively small, which is true when
a is large or T, is large; in these cases N, is close to its mean value of 7,;/z.
Comparisons of the MTATSF and MSATSF spectra verify this behavior.

The form of the temporally-correlated TSF spectrum (6.3) shows that the marks
will only affect the spectrum if the correlation length is not large with respect to
T. Although there is no equivalent to (6.3) in the sequentially correlated case, the
relationship between the window length and the correlation length, 7,,,Z, should be
similar. In the extreme case where the marks are uncorrelated, the marks contribute
a constant term to the PSD of the marked process, so the marks act to obscure the

spectral structure of the scatterer process.
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7. APPROXIMATION ACCURACY IN THE MARKED CASE

Just as in the unmarked case, the approximation error of the marked ATSF ex-
pressions may be analyzed by comparing them to numerical evaluations of the TSF
spectra for various parameter combinations. Both the marked TSF and marked ATSF
spectra may be separated into terms due to the unmarked and marked processes; the
accuracy of the former was discussed earlier. The accuracy of the latter terms may
be examined by setting 7@ = 0 and 02, = 1 and comparing the ATSF spectra with
numerical evaluations of (6.3) and (6.16). Table 7.1 presents the error between these
functions for the temporally correlated case in both the ISE and RMS forms, for
various extremes of parameter values. The values of correlation length were chosen to
be either T'/10 or 10T. Since the temporal and sequential cases can be made approx-
imately equivalent through the appropriate choice of parameters, only the temporal
case is considered here.

The table indicates that the error increases with 7,, and decreases with T and
o. As the correlation length becomes longer, the contribution of the marks looks
more like the original unmarked process spectrum, and, in fact, these terms become
equivalent to the unmarked ATSF spectrum in the limiting case. For large 7,,, then,
the error is that of the unmarked case, which can be verified by comparing this table
with Table 4.1. Relatively small errors are associated with small values of 7,,. Since
(6.3) shows that the effect of the mark process is to filter the unmarked process, the
mark components of the TSF spectrum should appear to be smoothed versions of the
unmarked TSF spectrum. The small error associated with small values of 7,, then
indicates that the functional form of the MTATSF spectrum is a better approximator

of these smoothed spectra than the ATSF function was of the unsmoothed spectra.
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Table 7.1 Absolute(ISE) and relative (RMS) error of the MTATSF power spectrum.

a T 7, |ISE(dB) | RMS (%)
10 10 1 -37.3 1.8
10 10 100 -25.4 18.4
100 10 1 -43.1 1.0
100 10 100 -24.2 9.4
10 100 10 -47.9 0.4
10 100 1000 -31.8 14.4
100 100 10 -47.5 0.2
100 100 1000 -41.6 17.4

The approximation accuracy of the marked ATSF spectra is therefore dominated

by that of its unmarked ATSF spectral component, so the extension of the ATSF

expressions to the marked case adds very little extra approximation error. Accurate

evaluations of the marked TSF convolution (6.3) can become costly, because the

tails of the autocorrelation function or its PSD can lead to aliasing errors. In these

instances, the closed-form approximations provided by the MTATSF and MSATSF

spectra can be quite valuable.
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8. PARAMETER ESTIMATION WITH MARKED PROCESSES

At a minimum, the mark process adds three new parameters, m, o2, and 7,,, to
the two characterizing the regularity model. In order to restrict the scope of the
investigation, we will not consider mark models with nonzero w,,. The significance
of the marks depends only on the SMNPR, so we shall assume that 7 has been
normalized to unity. The presence of the marks in the parameter estimation problem
can be viewed in two ways. One can assume that the parameters characterizing
the mark process simply increase the dimensionality of the estimation problem by

replacing the unknown parameter vector 6 = [a, z] with § = [, Z,02,, Trm], OF OnE can

yOm»
view the marks as noise which interferes with the estimation of the original regularity
model parameters.

We consider the former case first. It is difficult to examine the limitations on es-
timator performance with the same level of detail as was done in the two-parameter
case because the computational costs increase exponentially with the dimensional-
ity of the problem. In the original two-dimensional problem, P, was approximated
by evaluating the ATSE on a mesh of points and then determining which of these
points was in the set which converged to he global minimum. In four dimensions, it
was computationally prohibitive to compute the ATSE on a similar four-dimensional
mesh, so the mesh density was reduced to four points per decade. In order to gauge
the effect of the marks on parameter estimation, we first examine some representative
cases in which the frequency sampling rate is chosen to be large enough to not be
an issue. We consider only the temporally correlated process, since the temporal and
sequential cases can be made approximately equivalent with the appropriate choice

of parameters. Table 8.1 shows the TRE of the global minimum of the ATSE surface

for various mark parameters and a fixed set of regularity model parameters. The




Table 8.1

49

Average TRE (100 trials) for various combinations of mark param-

eters with a« = 40, T =

100, and SNPR=co. TRE entries are of the form:
mean/standard-deviation. Averages of individual parameter errors are also shown.

02 7m | TRE (%) | ea ez €2 €r,
0.1 100{ 84/94 [0.06 0.03 0.2 39.0
1 100 12/14 0.02 0.03 0.05 20
10 100 4/4 0.02 0.03 0.03 1.0
0.1 10 45/170 |0.02 0.01 3.7 211
1 10 5/9 0.08 0.02 0.21 0.5
10 10 0.7/1 0.01 0.03 0.01 0.3
0.1 1 93/240 0.4 0.06 26 59.6
1 1 8/15 1.05 0.05 027 44
10 1 1/3 0.2 0.0001 0.007 0.2
0.1 0.1 | 119/78 0.6 0.2 5.1 45.6
1 0.1 118/120 | 0.5 0.07 0.02 79.6
10 0.1 | 85/135 0.3 0.03 0.002 72.7
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table also shows the averages of the individual component errors. The algorithm
used to locate the global minimum of the ATSE often failed to converge when 7,
was small (0.1), resulting in a large TRE. This is because the gradient of the ATSE
surface rapidly decreases to zero in the direction of decreasing #,, when 7, < 7,,.
This behavior becomes more severe as 7, decreases. An intuitive explanation is that
once the correlation length becomes less than one mean inter-scatterer distance, it
becomes impossible to distinguish between estimated correlation lengths that are less
than one mean inter-scatterer distance.

The TRE in all cases of Table 8.1 was dominated by error in estimating the

correlation length, which may be seen by examining the averages of the individual

2

parameter estimation errors. The TRE decreases as o2,

increases, indicating that the
mark parameters are difficult to estimate when the marks are not significant. On the
other hand, it appears that a and Z can still be accurately estimated, even when the
marks are significant and regardless of the correlation length.

If the marks are viewed as a noise which corrupts the measurement of the fun-
damental scatterer process, the goal of a parameter estimation scheme, as it was in
the unmarked case, is to estimate § = [, Z]. In this case, the parameters can be
estimated by trying to minimize the ATSE in four dimensions between the observed
marked spectrum and the MTATSF or MSATSF spectra, or the error may be min-
imized in only two dimensions using the unmarked ATSF spectrum. The SMNPR
now has the interpretation of being a true signal-to-noise ratio. The data of Table
8.1 indicate that the former approach can be quite successful, since the average error
of the o and Z estimates is small.

The feasibility of the latter approach may be examined by determining P, and
TRE for the two-dimensional ATSE surface which is generated by differencing the
MTTSF and ATSF spectra. In this case, the estimation procedure minimizes the
error between the marked-process TSF spectrum and the unmarked ATSF spectrum.

Table 8.2 shows averages of TRE and P, for different extremes of 7,, and SMNPR.

P, was estimated in the same manner as in the unmarked case. The TRE data are
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. Table 8.2 Average TRE and P, (100 trials) when estimating (o, Z) in the presence

of mark noise. a =100, T' = 100, ps = 9.93 (samples/Hz), and SNPR = oo.

o2 T P.  TRE (%)
10 10 |0.86/0.16 247/283
1 10 |0.79/0.11  51/33
0.1 10 |0.86/0.05  4/4

10 1000 | 0.86/0.11  296/312
1 1000 | 0.78/0.08  59/32
0.1 1000 | 0.86/0.04  5/6

shown graphically in Fig. 8.1. They indicate an approximately inverse relationship

between the SMNPR ratio and the TRE. This suggests that significant errors will

be introduced into the measurement process if the SMNPR is smaller than about 10.

The average TRE values for the larger value of correlation length are consistently

‘ larger, but the differences are less than two standard deviations of the sample means,

so this observation may not be significant.
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9. CONCLUSIONS

This thesis has examined the application of surface regularity models to the prob-
lem of measuring surfaces with coherent illumination. We presented a new expression
for the PSD of the SRP which describes the scatterer distribution, and developed the
mean ATSF power spectrum as an approximate expression for the mean power spec-
trum of a finite interval of the SRP, which is empirically shown to be valid for all but
very short sample intervals and large values of model order, o. Both expressions are
valid for both integer and non-integer values of a. The approximation incorporates
the windowing effect caused by editing or range gating without the computational
burden of performing a convolution. Since the simple periodogram directly estimates
the mean power spectrum of windowed data, we take the approach of estimating the
model parameters by minimizing the total squared error between the periodogram
and the approximation. The merit of this approach is its relative simplicity, since
we avoid more elaborate schemes that would require more sophisticated spectral es-
timation procedures. This is often desirable, since the goal is accurate estimation of
the model parameters, rather than accurate estimation of the PSD. The drawback of
the approach is that the frequency resolution limitations of the periodogram limit its
utility when 7'/Z is small.

Use of the approximation and periodogram in this way defines the parameter
estimation procedure as an error minimization problem. By restricting ourselves
to the use of a wideband periodogram estimate with uniformly spaced frequency
samples, we have been able to examine some of the relevant properties of ATSE
surfaces. These properties suggest a search strategy to efficiently find the optimal

parameter estimates.
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The error of the ATSF approximation only hinders parameter estimation when
T/z and « are mutually small. The TRE of the global minimum of the ATSE surface
places a ‘lower limit on the accuracy of a parameter estimation scheme seeking to
minimize the ATSE. This TRE is inversely proportional to the square-root of the
periodogram SNPR, and is approximately unchanged if the product of T' and SNPR
is constant. The TRE for the SNPR=00 case is typically less than 1%, except at very
small frequency sampling rates. At a finite SNPR, the TRE decreases slightly as o
increases. These observations together suggest that the accuracy of the parameter
estimate obtained by minimizing the ATSE is limited primarily by the periodogram
SNPR.

P, is relatively unaffected by the SNPR, but it does depend on . An estimate
of the frequency sampling rate above which P, is both large and stable is p?tO% =
0.02c. 4+ 4.0 (samples/Hz). This rate shares a linear dependence on o with various
potential measures of the Nyquist rate, but is significantly smaller at large values of a.
Since the bandwidths of successive peaks of the PSD decrease with frequency, chirped
sampling rates which reduce the sampling rate for higher-order spectral peaks may
further reduce sampling rate requirements; this subject is left for future research.

The ability to estimate the model parameters at sparse frequencies in the wide-
band measurement case indicates that similar success could be achieved by matching
narrow-band measurements directly to the PSD (2.13). In this scenario, the narrow-
band, frequency-agile system could measure information about surface properties on
scales below that of the system resolution. We leave the analysis of this situation for
future research.

Assuming a damped-sinusoidal form for the mark autocorrelation, we present ex-
pressions for the PSD of the marked regularity process in the case where the marks are
sequentially correlated, and develop closed-form approximations of the mean power
spectrum of finite intervals of the marked process in both the sequential and tempo-

rally correlated cases. We find that the additional approximation error incurred by
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accounting for the marks is not significant, so there is little penalty for using these ap-
proximations. Joint estimation of the regularity and mark parameters seems limited
to the case where the marks have significant power with respect to the scatterer pro-
cess, because the mark autocorrelation length is difficult to estimate by minimizing
the ATSE surface. Estimation of only the regularity model parameters in the pres-
ence of mark noise seems feasible when the mark process is accounted for, but not
when it is ignored. The cost of accounting for the marks is a greater computational

burden, because the ATSE becomes at least four-dimensional.
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ABSTRACT

Cramblitt, Robert M. Ph.D., Purdue University, December, 1994. Techniques for Sub-
resolution Surface Characterization Using Coherent Diversity Measurements. Major

Professor: Dr. Mark R. Bell.

This dissertation examines the feasibility of obtaining small-scale surface infor-
mation from freqﬁency-diverse measurements of surfaces that are stochastically de-
scribed by a regularity model. This parametric point-process model describes a one-
dimensional surface in terms of the mean and variance of the inter-scatterer distances,
and can represent scatterer distributions ranging from totally random to nearly peri-
odic. The problem of estimating model parameters from measured spectra is solved by
optimizing the total squared-error between closed-form approximations of the mean
power spectra of finite-length data intervals and the simple periodogram. The disser-
tation examines the general performance limitations of such a procedure, determining
how approximation error, signal-to-noise ratio and frequency-sampling rate affect the
feasibility and accuracy of parameter estimation. We find that parameter estima-
tion is feasible at 'freciuency-sampling rates that are well below that suggested by the
PSD. This suggests that it is possible to obtain parameter estimates by comparing
sparse narrow-band frequency measurements to the PSD of the pbint—process, thereby
obtaining information about the surface on sub-resolution scales. |

The di-ssertation extends the model to describe marked point processes. We dis-
cover that ignoring the marks can cause significant estimation error when estimating
the regularity model parameters in the presence of mark noise. Joint estimation of
the regularity and .mark parameters is feasible only when the variance of the marks is
large with respect to their mean. Accounting for the marks can, however, allow the

regularity parameters to be accurately estimated in the presence of mark noise.
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